If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-20y-12=0
a = 3; b = -20; c = -12;
Δ = b2-4ac
Δ = -202-4·3·(-12)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{34}}{2*3}=\frac{20-4\sqrt{34}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{34}}{2*3}=\frac{20+4\sqrt{34}}{6} $
| -5g+2.3=-2.3 | | x-2+7=3x+9 | | b+1/3b+2/3=2 | | 2k-10+3k=k+6 | | z/5+2=-54 | | 17=m-5 | | (2x-20)=x+15 | | 84=-6(-3x4) | | 4x=7x-7x=56 | | 1=5/6x+4/6x | | 2p^2-12p+9=0 | | 4x=7-7x=56 | | 1/3-2/m=15+m | | x+40=x3 | | 25x+30+5x=360 | | x²+2x+15=12 | | X=(-2x+5)+3 | | 3x^2-20=-x | | k/9.8+34.7=24.4 | | -5(-3n-8)=160 | | 200-3x=-203x | | -189=-3-6(-5-6x) | | 25/3=50/n | | -16+8n=8n+8n | | 2.3x=1.7x=24 | | 25=25(0)-16t^2 | | -7r-15=r+1 | | (x/3)−24=-18 | | (w+3)(w+10)=0 | | 5x-3-1=-3x-7 | | 3v+48=6(v+3) | | x/3−24=(-18) |